Oil and gas pump

Prioritizing fugitive methane leak repairs to combat climate change

Ryan Strom, Director

Ryan Strom | Director - Worley Digital, Calgary | 11 March 2019

In this article, Ryan Strom discusses why finding an accurate solution to tackle fugitive methane emissions has never been so important.

Gas is considered a key weapon in tackling climate change as it is less carbon intensive than coal. In Asia, growing unease about air quality in post-industrial China has led to impressive deals for natural gas supply, while many developed countries have been turned onto it for a while. But the existence of fugitive methane emissions calls into question the greenhouse gas-reducing credentials of natural gas and its categorization as a clean fuel.

Methane is the overlooked yet substantially more potent sibling of carbon dioxide. When unburnt, methane is tens of times more greenhouse gas intensive than when flared. While methane emissions occur naturally, one-third, often nicknamed ‘fugitive emissions’, are released by the production of oil and gas. Although not as prevalent as carbon in the atmosphere, methane’s potent effect means tackling fugitive emissions is just as necessary.

Awareness of fugitive methane emissions is growing, particularly in the natural gas supply-side value chain. If natural gas is to take its place as an alternative to coal in the fight against greenhouse gas emissions, then emissions of unburnt methane in the supply chain must be held to less than one percent of total production. Current US estimates range from a lower level estimate of two percent of overall production to around 17 percent.

Tackling fugitive methane emissions is a serious and growing concern

Yet natural gas prices are at record lows – about $3 per MMBTU – and the regulatory landscape around methane emissions is uncertain in some countries. In September 2018, the US Environmental Protection Agency announced plans to weaken the requirements on companies to monitor and repair methane leaks in a step to reduce “costly and burdensome rules”. Added together, these factors reduce the incentive to deploy exhaustive and expensive leak detection and repair solutions.

Traditional methods of detecting and measuring fugitive emissions are based on assessing gas concentrations, which is a qualitative and costly approach. If regulatory requirements for reducing emissions are lessened, the commercial incentive for tackling fugitive emissions must be stronger. The industry needs low-cost solutions that can quantify emissions efficiently, effectively and more safely, while allowing for the biggest leaks to be fixed first.

To help find a solution to the challenge, the Environmental Defense Fund and Stanford University’s Natural Gas Initiative recently invited 11 organizations, covering 12 different technologies, to the controlled testing phase of the Mobile Monitoring Challenge; a competition to advance mobile methane monitoring technologies at oil and natural gas facilities. The aim of the competition was to examine the effectiveness of both leak detection and quantification technologies. The emphasis was on identifying fast, low-cost, mobile technologies with the ability to quickly assess leaks while in motion and off-site.

A team from Worley Digital took part in the competition to test its Fugitive Emissions Leak Detection and Repair Platform (FELDAR) - an infrared-sensor-equipped drone that collects image processing data, analyzed by a mathematical engine, to accurately generate mass or volume leak rate data. This provides a quantifiable option for leak detection and monitoring and gives operators the ability to prioritize leaks for repair and give more confidence in the reporting required for aggregated leaks.

In a sector where 80 percent of the emissions are caused by 20 percent of the leaks the ability to prioritize repairs accordingly is a step change in efficiency and safety for the gas supply chain. Operators stand to benefit from a significant reduction in total lifetime plant emissions, while also reducing the associated costs. FELDAR can also quantify greenhouse gas emissions to demonstrate the improvement to the carbon footprint.

In addition, using drones is often safer, quicker, more accurate and causes less on-site interference than traditional methods. The web-based, fully-automated and interoperable portal is accessible from anywhere and is built on an open data architecture – ensuring it will always work with other inputs and stands ready to provide outputs to anyone or anything that requires them.

Once this technology becomes widespread, it's going to have a disruptive effect on future fugitive emissions surveying. It will also undoubtedly allow natural gas to reclaim its rightful position on the world stage as a clean-burning fuel ensuring its contribution to carbon emissions reduction for many years to come.